Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
Microb Genom ; 8(1)2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35040428

RESUMO

The development of spots or lesions symptomatic of common scab on root and tuber crops is caused by few pathogenic Streptomyces with Streptomyces scabiei 87-22 as the model species. Thaxtomin phytotoxins are the primary virulence determinants, mainly acting by impairing cellulose synthesis, and their production in S. scabiei is in turn boosted by cello-oligosaccharides released from host plants. In this work we aimed to determine which molecules and which biosynthetic gene clusters (BGCs) of the specialized metabolism of S. scabiei 87-22 show a production and/or a transcriptional response to cello-oligosaccharides. Comparative metabolomic analyses revealed that molecules of the virulome of S. scabiei induced by cellobiose and cellotriose include (i) thaxtomin and concanamycin phytotoxins, (ii) desferrioxamines, scabichelin and turgichelin siderophores in order to acquire iron essential for housekeeping functions, (iii) ectoine for protection against osmotic shock once inside the host, and (iv) bottromycin and concanamycin antimicrobials possibly to prevent other microorganisms from colonizing the same niche. Importantly, both cello-oligosaccharides reduced the production of the spore germination inhibitors germicidins thereby giving the 'green light' to escape dormancy and trigger the onset of the pathogenic lifestyle. For most metabolites - either with induced or reduced production - cellotriose was revealed to be a slightly stronger elicitor compared to cellobiose, supporting an earlier hypothesis which suggested the trisaccharide was the real trigger for virulence released from the plant cell wall through the action of thaxtomins. Interestingly, except for thaxtomins, none of these BGCs' expression seems to be under direct control of the cellulose utilization repressor CebR suggesting the existence of a yet unknown mechanism for switching on the virulome. Finally, a transcriptomic analysis revealed nine additional cryptic BGCs that have their expression awakened by cello-oligosaccharides, suggesting that other and yet to be discovered metabolites could be part of the virulome of S. scabiei.


Assuntos
Vias Biossintéticas/efeitos dos fármacos , Celobiose/farmacologia , Celulose/farmacologia , Tubérculos/microbiologia , Streptomyces/crescimento & desenvolvimento , Trioses/farmacologia , Fatores de Virulência/metabolismo , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Macrolídeos/metabolismo , Metabolômica , Família Multigênica/efeitos dos fármacos , Piperazinas/metabolismo , Tubérculos/crescimento & desenvolvimento , RNA-Seq , Streptomyces/efeitos dos fármacos , Streptomyces/metabolismo , Streptomyces/patogenicidade
2.
Toxins (Basel) ; 13(9)2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34564602

RESUMO

The aim of this study was to evaluate the interactions between wheat plant (spikelets and straws), a strain of mycotoxigenic pathogen Fusarium graminearum and commercial biocontrol agents (BCAs). The ability of BCAs to colonize plant tissue and inhibit the pathogen or its toxin production was observed throughout two phases of the life cycle of pathogens in natural conditions (colonization and survival). All evaluated BCAs showed effective reduction capacities of pathogenic traits. During establishment and the expansion stage, BCAs provoked an external growth reduction of F. graminearum (77-93% over the whole kinetic studied) and mycotoxin production (98-100% over the whole kinetic studied). Internal growth of pathogen was assessed with digital droplet polymerase chain reaction (ddPCR) and showed a very strong reduction in the colonization of the internal tissues of the spikelet due to the presence of BCAs (98% on average). During the survival stage, BCAs prevented the formation of conservation perithecia of the pathogen on wheat straw (between 88 and 98% of perithecia number reduction) and showed contrasting actions on the ascospores they contain, or perithecia production (-95% on average) during survival form. The mechanisms involved in these different interactions between F. graminearum and BCAs on plant matrices at different stages of the pathogen's life cycle were based on a reduction of toxins, nutritional and/or spatial competition, or production of anti-microbial compounds.


Assuntos
Agentes de Controle Biológico/farmacologia , Fusarium/patogenicidade , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Micotoxinas/biossíntese , Micotoxinas/toxicidade , Doenças das Plantas/prevenção & controle , Triticum/microbiologia , Grão Comestível/microbiologia , Pythium/química , Pythium/patogenicidade , Streptomyces/química , Streptomyces/patogenicidade , Trichoderma/química , Trichoderma/patogenicidade
3.
PLoS One ; 16(6): e0253414, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34133457

RESUMO

Common scab is a potato disease characterized by the formation of scab-like lesions on the surface of potato tubers. The actinobacterium Streptomyces scabiei is the main causal agent of common scab. During infection, this bacterium synthesizes the phytotoxin thaxtomin A which is essential for the production of disease symptoms. While thaxtomin A can activate an atypical programmed cell death in plant cell suspensions, it is possible to gradually habituate plant cells to thaxtomin A to provide resistance to lethal phytotoxin concentrations. Potato 'Russet Burbank' calli were habituated to thaxtomin A to regenerate the somaclone RB9 that produced tubers more resistant to common scab than those obtained from the original cultivar. Compared to the Russet Burbank cultivar, somaclone RB9 generated up to 22% more marketable tubers with an infected tuber area below the 5% threshold. Enhanced resistance was maintained over at least two years of cultivation in the field. However, average size of tubers was significantly reduced in somaclone RB9 compared to the parent cultivar. Small RB9 tubers had a thicker phellem than Russet Burbank tubers, which may contribute to improving resistance to common scab. These results show that thaxtomin A-habituation in potato is efficient to produce somaclones with increased and durable resistance to common scab.


Assuntos
Resistência à Doença , Indóis/metabolismo , Piperazinas/metabolismo , Doenças das Plantas/imunologia , Solanum tuberosum/imunologia , Streptomyces/metabolismo , Doenças das Plantas/microbiologia , Tubérculos/crescimento & desenvolvimento , Tubérculos/imunologia , Tubérculos/metabolismo , Tubérculos/microbiologia , Solanum tuberosum/metabolismo , Solanum tuberosum/microbiologia , Streptomyces/patogenicidade
4.
Mol Plant Microbe Interact ; 34(1): 39-48, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33030393

RESUMO

The genus Streptomyces includes several phytopathogenic species that cause common scab, a devastating disease of tuber and root crops, in particular potato. The diversity of species that cause common scab is unknown. Likewise, the genomic context necessary for bacteria to incite common scab symptom development is not fully characterized. Here, we phenotyped and sequenced the genomes of five strains from a poorly studied Streptomyces lineage. These strains form a new species-level group. When genome sequences within just these five strains are compared, there are no polymorphisms of loci implicated in virulence. Each genome contains the pathogenicity island that encodes for the production of thaxtomin A, a phytotoxin necessary for common scab. Yet, not all sequenced strains produced thaxtomin A. Strains varied from nonpathogenic to highly virulent on two hosts. Unexpectedly, one strain that produced thaxtomin A and was pathogenic on radish was not aggressively pathogenic on potato. Therefore, while thaxtomin A biosynthetic genes and production of thaxtomin A are necessary, they are not sufficient for causing common scab of potato. Additionally, results show that even within a species-level group of Streptomyces strains, there can be aggressively pathogenic and nonpathogenic strains despite conservation of virulence genes.


Assuntos
Produtos Agrícolas , Doenças das Plantas , Streptomyces , Virulência , Produtos Agrícolas/microbiologia , Genoma Bacteriano/genética , Ilhas Genômicas/genética , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , Tubérculos/microbiologia , Solanum tuberosum/microbiologia , Streptomyces/classificação , Streptomyces/genética , Streptomyces/patogenicidade , Virulência/genética
5.
Arq. Inst. Biol ; 88: e00552020, 2021. graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1349007

RESUMO

Potato scab caused by different species of phytopathogenic Streptomyces is considered one of the main bacterial diseases of economic crop importance worldwide. Several studies are being carried out in order to control the disease, but until now, there is no efficient way to do this. Some management strategies have been investigated including application of chemical and biological products and utilization of resistant cultivars of potato but there are few reports about the impact of pH and irrigation regimes on the disease. The present study aimed to evaluate the effects of these last two factors on the incidence and severity of potato scab caused by S. scabiei, S. acidiscabies, Streptomyces sp., S. caviscabies and S. europaeiscabiei in assays at pH 4.0, 4.5, 5.0, 5.5, 6.5 and 7.5; and irrigation regimes of once a week, alternate days and daily in greenhouse conditions. The experimental design for the pH tests was randomized blocks arranged in a 5x2 factorial scheme, with 5 replications and 3x2 for the irrigation regimes with 5 replications. The pH tests showed significant differences between the treatments and pH 4,0 - 4,5 presented lower incidence and severity of the disease for the most species tested but no significant differences were observed between the irrigation regimes. The soil acidification is considered a classic strategy for management of the disease and the results obtained herein corroborated this hypothesis.


Assuntos
Streptomyces/patogenicidade , Solanum tuberosum , Umidade do Solo , Infecções Bacterianas , Controle de Pragas , Acidificação
6.
PLoS One ; 15(7): e0235018, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32673321

RESUMO

Common scab disease in potato has become a widespread issue in major potato production areas, leading to increasing economic losses. Varietal resistance is seen as a viable and long-term scab management strategy. However, the genes and mechanisms of varietal resistance are unknown. In the current study, a comparative RNA transcriptome sequencing and differential gene signaling and priming sensitization studies were conducted in two potato cultivars that differ by their response to common scab (Streptomyces scabies), for unraveling the genes and pathways potentially involved in resistance within this pathosystem. We report on a consistent and contrasted gene expression pattern from 1,064 annotated genes differentiating a resistant (Hindenburg) and a susceptible (Green Mountain) cultivars, and identified a set of 273 co-regulated differentially expressed genes in 34 pathways that more likely reflect the genetic differences of the cultivars and metabolic mechanisms involved in the scab pathogenesis and resistance. The data suggest that comparative transcriptomic phenotyping can be used to predict scab lesion phenotype in breeding lines using mature potato tuber. The study also showed that the resistant cultivar, Hindenburg, has developed and maintained a capacity to sense and prime itself for persistent response to scab disease over time, and suggests an immune priming reaction as a mechanism for induced-resistance in scab resistant potato cultivars. The set of genes identified, described, and discussed in the study paves the foundation for detailed characterizations towards tailoring and designing procedures for targeted gene knockout through gene editing and phenotypic evaluation.


Assuntos
Perfilação da Expressão Gênica , Solanum tuberosum/imunologia , Streptomyces/imunologia , Resistência à Doença/genética , Resistência à Doença/imunologia , Suscetibilidade a Doenças/imunologia , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/imunologia , Escabiose/microbiologia , Solanum tuberosum/microbiologia , Especificidade da Espécie , Streptomyces/patogenicidade
7.
BMC Infect Dis ; 20(1): 499, 2020 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-32652948

RESUMO

BACKGROUND: Streptomyces cacaoi, Gram-positive, branched, filamentous bacillus forms without fragmentation, are saprophytic soil organisms rarely known to cause invasive infections other than mycetoma. Here we describe a case of chronic suppurative otitis media caused by Streptomyces cacaoi in a patient with hyperlipidemia in China. CASE PRESENTATION: A 62-year-old female patient with hyperlipidemia suffered chronic suppurative otitis media caused by Streptomyces cacaoi. She had a favorable outcome with a 4-week course of ofloxacin ear drops. CONCLUSIONS: Streptomyces cacaoi is rarely reported to cause human infection. The introduction of molecular techniques improves the ability to identify rare species such as Streptomyces considerably. We report the case improve our ability to identify this pathogen and expand the range of known bacterial causes of human infection.


Assuntos
Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Infecções por Bactérias Gram-Positivas/microbiologia , Otite Média Supurativa/tratamento farmacológico , Otite Média Supurativa/microbiologia , Streptomyces/patogenicidade , Antibacterianos/administração & dosagem , Antibacterianos/uso terapêutico , China , Feminino , Humanos , Pessoa de Meia-Idade , Ofloxacino/administração & dosagem , Ofloxacino/uso terapêutico , Streptomyces/genética , Streptomyces/isolamento & purificação , Resultado do Tratamento , Timpanoplastia/métodos
8.
Mol Plant Pathol ; 21(5): 622-635, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32056349

RESUMO

Two Pythium-infested soils were used to compare the wheat root and rhizosphere soil microbial communities from plants grown in the field or in greenhouse trials and their stability in the presence of biocontrol agents. Bacteria showed the highest diversity at early stages of wheat growth in both field and greenhouse trials, while fungal diversity increased later on, at 12 weeks of the crop cycle. The microbial communities were stable in roots and rhizosphere samples across both soil types used in this study. Such stability was also observed irrespective of the cultivation system (field or greenhouse) or addition of biocontrol coatings to wheat seeds to control Pythium disease (in this study soil infected with Pythium sp. clade F was tested). In greenhouse plant roots, Archaeorhizomyces, Debaryomyces, Delftia, and unclassified Pseudeurotiaceae were significantly reduced when compared to plant roots obtained from the field trials. Some operational taxonomic units (OTUs) represented genetic determinants clearly transmitted vertically by seed endophytes (specific OTUs were found in plant roots) and the plant microbiota was enriched over time by OTUs from the rhizosphere soil. This study provided key information regarding the microbial communities associated with wheat roots and rhizosphere soils at different stages of plant growth and the role that Paenibacillus and Streptomyces strains play as biocontrol agents in supporting plant growth in infested soils.


Assuntos
Paenibacillus/patogenicidade , Streptomyces/patogenicidade , Triticum/microbiologia , Microbiota , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , Rizosfera , Microbiologia do Solo
9.
BMC Microbiol ; 20(1): 33, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-32050891

RESUMO

BACKGROUND: Production of antibiotics to inhibit competitors affects soil microbial community composition and contributes to disease suppression. In this work, we characterized whether Streptomyces bacteria, prolific antibiotics producers, inhibit a soil borne human pathogenic microorganism, Streptomyces sudanensis. S. sudanensis represents the major causal agent of actinomycetoma - a largely under-studied and dreadful subcutaneous disease of humans in the tropics and subtropics. The objective of this study was to evaluate the in vitro S. sudanensis inhibitory potential of soil streptomycetes isolated from different sites in Sudan, including areas with frequent (mycetoma belt) and rare actinomycetoma cases of illness. RESULTS: Using selective media, 173 Streptomyces isolates were recovered from 17 sites representing three ecoregions and different vegetation and ecological subdivisions in Sudan. In total, 115 strains of the 173 (66.5%) displayed antagonism against S. sudanensis with different levels of inhibition. Strains isolated from the South Saharan steppe and woodlands ecoregion (Northern Sudan) exhibited higher inhibitory potential than those strains isolated from the East Sudanian savanna ecoregion located in the south and southeastern Sudan, or the strains isolated from the Sahelian Acacia savanna ecoregion located in central and western Sudan. According to 16S rRNA gene sequence analysis, isolates were predominantly related to Streptomyces werraensis, S. enissocaesilis, S. griseostramineus and S. prasinosporus. Three clusters of isolates were related to strains that have previously been isolated from human and animal actinomycetoma cases: SD524 (Streptomyces sp. subclade 6), SD528 (Streptomyces griseostramineus) and SD552 (Streptomyces werraensis). CONCLUSION: The in vitro inhibitory potential against S. sudanensis was proven for more than half of the soil streptomycetes isolates in this study and this potential may contribute to suppressing the abundance and virulence of S. sudanensis. The streptomycetes isolated from the mycetoma free South Saharan steppe ecoregion show the highest average inhibitory potential. Further analyses suggest that mainly soil properties and rainfall modulate the structure and function of Streptomyces species, including their antagonistic activity against S. sudanensis.


Assuntos
Micetoma/prevenção & controle , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos , Streptomyces/classificação , Antibiose , DNA Bacteriano/genética , DNA Ribossômico/genética , Florestas , Pradaria , Humanos , Filogenia , Microbiologia do Solo , Sudão do Sul , Streptomyces/genética , Streptomyces/isolamento & purificação , Streptomyces/patogenicidade , Streptomyces/fisiologia , Sudão
10.
Molecules ; 25(3)2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-32012990

RESUMO

Exploration of the effect of soil bacteria on growth and metabolism of beneficial root endophytic fungi is relevant to promote favorable associations between microorganisms of the plant rhizosphere. Hence, the interaction between the plant-growth-promoting fungus Piriformospora indica and different soil bacteria was investigated. The parameters studied were fungal growth and its amino acid composition during the interaction. Fungus and bacteria were confronted in dual cultures in Petri dishes, either through agar or separated by a Perspex wall that only allowed the bacterial volatiles to be effective. Fungal growth was stimulated by Azotobacter chroococcum, whereas Streptomyces anulatus AcH 1003 inhibited it and Streptomyces sp. Nov AcH 505 had no effect. To analyze amino acid concentration data, targeted metabolomics was implemented under supervised analysis according to fungal-bacteria interaction and time. Orthogonal partial least squares-discriminant analysis (OPLS-DA) model clearly discriminated P. indica-A. chroococcum and P. indica-S. anulatus interactions, according to the respective score plot in comparison to the control. The most observable responses were in the glutamine and alanine size groups: While Streptomyces AcH 1003 increased the amount of glutamine, A. chroococcum decreased it. The fungal growth and the increase of alanine content might be associated with the assimilation of nitrogen in the presence of glucose as a carbon source. The N-fixing bacterium A. chroococcum should stimulate fungal amino acid metabolism via glutamine synthetase-glutamate synthase (GS-GOGAT). The data pointed to a stimulated glycolytic activity in the fungus observed by the accumulation of alanine, possibly via alanine aminotransferase. The responses toward the growth-inhibiting Streptomyces AcH 1003 suggest an (oxidative) stress response of the fungus.


Assuntos
Aminoácidos/análise , Azotobacter/patogenicidade , Basidiomycota/crescimento & desenvolvimento , Streptomyces/patogenicidade , Basidiomycota/química , Glicólise , Metabolômica , Estresse Oxidativo , Microbiologia do Solo , Aprendizado de Máquina Supervisionado
11.
Rev. argent. microbiol ; 51(4): 363-370, dic. 2019. graf
Artigo em Inglês | LILACS | ID: biblio-1057402

RESUMO

Abstract A strain isolated from potato common scab superficial lesions in El Fuerte Valley in northern Sinaloa, Mexico, was identified by 16S rRNA and morphological methods. Moreover, the effects of the crude extract of strain V2 was evaluated on radish and potato. The isolate was similar to Streptomyces acidiscabies in its morphological properties; however, the 16S rRNA gene sequence of strain V2 was neither 100% identical to this species nor to the streptomycetes previously reported in Sinaloa, Mexico. Strain V2 did not amplify any specific PCR products for genes necl and tomA, which have been found and reported in S. acidiscabies. Strain V2 produced a PCR product for the txtAB operon, which is related to the production of thaxtomin. In vitro assays using crude thaxtomin extract and a spore suspension of the organism caused necrotic symptoms on radish and potato, which were highly virulent in potato. This study reports that Streptomyces sp. V2 has a toxigenic region (TR) that is associated with the thaxtomin gene cluster.


Resumen Se aisló una cepa de una lesión superficial de sarna común de la papa en un ejemplar procedente del Valle del Fuerte, en el norte de Sinaloa, México. La cepa fue identificada por secuenciación del gen 16S ARNr, y por sus características morfológicas. Los efectos del extracto crudo de dicha cepa, llamada V2, fue evaluado en papa y rábano. El aislado fue similar a Streptomyces acidiscabies en sus características morfológicas, pero la secuencia del gen 16S ARNr de la cepa V2 no fue 100% idéntica a la de dicha especie, ni tampoco a las de cepas identificadas dentro de este taxón previamente en Sinaloa, México. La cepa V2 no amplificó los productos específicos de PCR de los genes nec1 y tomA, los cuales sí se han reportado en S. acidiscabies. La cepa V2 amplificó el producto de PCR para del operón txtAB, relacionado con la producción de taxtomina. A través de ensayos in vitro usando un extracto crudo de taxtomina y una suspensión de esporas del organismo aislado se verificó la producción de síntomas necróticos en rábano y papa, con mayor virulencia en esta última especie. Este estudio indica que Streptomyces sp. V2 tiene una región toxigénica (TR) asociada con el cluster de genes de taxtomina.


Assuntos
Streptomyces/isolamento & purificação , Streptomyces/patogenicidade , Solanum tuberosum/microbiologia , Técnicas In Vitro/métodos
12.
PLoS Negl Trop Dis ; 13(7): e0007351, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31295246

RESUMO

Mycetoma is a persistent, progressive granulomatous inflammatory disease caused either by fungi or by bacteria. Characteristic of this disease is that the causative agents organise themselves in macroscopic structures called grains. These grains are surrounded by a massive inflammatory reaction. The processes leading to this host tissue reaction and the immunophenotypic characteristics of the mycetoma granuloma are not known. Due to the massive immune reaction and the tissue remodeling involved, we hypothesised that the expression levels of interleukin-17 (IL-17) and matrix metalloprotease-9 (MMP-9) in the mycetoma granuloma formation were correlated to the severity of the disease and that this correlation was independent of the causative agent responsible for the granuloma reaction. To determine the expression of IL-17 and MMP-9 in mycetoma lesions, the present study was conducted at the Mycetoma Research Centre, Sudan. Surgical biopsies from 100 patients with confirmed mycetoma were obtained, and IL-17 and MMP-9 expression in the mycetoma granuloma were evaluated immunohistochemically. IL-17 was mainly expressed in Zones I and II, and far less in Zone III. MMP-9 was detected mainly in Zones II and III, and the least expression was in Zone I. MMP-9 was more highly expressed in Actinomadura pelletierii and Streptomyces somaliensis biopsies compared to Madurella mycetomatis biopsies. MMP-9 levels were directly proportional to the levels of IL-17 (p = 0.001). The only significant association between MMP9 and the patients' characteristics was the disease duration (p<0.001). There was an insignificant correlation between the IL-17 levels and the patients' demographic characteristics.


Assuntos
Interleucina-17/genética , Metaloproteinase 9 da Matriz/genética , Micetoma/genética , Actinobacteria/patogenicidade , Actinomadura , Adolescente , Adulto , Biópsia , Criança , Colágeno , Feminino , Expressão Gênica , Granuloma/microbiologia , Granuloma/patologia , Humanos , Imuno-Histoquímica , Madurella/patogenicidade , Masculino , Pessoa de Meia-Idade , Micetoma/patologia , Pesquisa Qualitativa , Índice de Gravidade de Doença , Streptomyces/patogenicidade , Sudão , Adulto Jovem
13.
Mol Plant Pathol ; 20(10): 1379-1393, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31282068

RESUMO

Streptomyces scabies causes potato common scab disease, which reduces the quality and market value of affected tubers. The predominant pathogenicity determinant produced by S. scabies is the thaxtomin A phytotoxin, which is essential for common scab disease development. Production of thaxtomin A involves the nonribosomal peptide synthetases (NRPSs) TxtA and TxtB, both of which contain an adenylation (A-) domain for selecting and activating the appropriate amino acid during thaxtomin biosynthesis. The genome of S. scabies 87.22 contains three small MbtH-like protein (MLP)-coding genes, one of which (txtH) is present in the thaxtomin biosynthesis gene cluster. MLP family members are typically required for the proper folding of NRPS A-domains and/or stimulating their activities. This study investigated the importance of TxtH during thaxtomin biosynthesis in S. scabies. Biochemical studies showed that TxtH is required for promoting the soluble expression of both the TxtA and TxtB A-domains in Escherichia coli, and amino acid residues essential for this activity were identified. Deletion of txtH in S. scabies significantly reduced thaxtomin A production, and deletion of one of the two additional MLP homologues in S. scabies completely abolished production. Engineered expression of all three S. scabies MLPs could restore thaxtomin A production in a triple MLP-deficient strain, while engineered expression of MLPs from other Streptomyces spp. could not. Furthermore, the constructed MLP mutants were reduced in virulence compared to wild-type S. scabies. The results of our study confirm that TxtH plays a key role in thaxtomin A biosynthesis and plant pathogenicity in S. scabies.


Assuntos
Proteínas de Bactérias/metabolismo , Solanum tuberosum/microbiologia , Streptomyces/metabolismo , Streptomyces/patogenicidade , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Indóis/metabolismo , Família Multigênica/genética , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Piperazinas/metabolismo , Doenças das Plantas/microbiologia , Streptomyces/genética , Virulência
14.
Microbiology (Reading) ; 165(10): 1025-1040, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31162023

RESUMO

Gram-positive Actinobacteria from the genus Streptomyces are best known for their morphological complexity and for their ability to produce numerous bioactive specialized metabolites with useful applications in human and veterinary medicine and in agriculture. In contrast, the ability to infect living plant tissues and to cause diseases of root and tuber crops such as potato common scab (CS) is a rare attribute among members of this genus. Research on the virulence mechanisms of plant-pathogenic Streptomyces spp. has revealed the importance of the thaxtomin phytotoxins as key pathogenicity determinants produced by several species. In addition, other phytotoxic specialized metabolites may contribute to the development or severity of disease caused by Streptomyces spp., along with the production of phytohormones and secreted proteins. A thorough understanding of the molecular mechanisms of plant pathogenicity will enable the development of better management procedures for controlling CS and other plant diseases caused by the Streptomyces.


Assuntos
Doenças das Plantas/microbiologia , Streptomyces/patogenicidade , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Reguladores de Crescimento de Plantas/química , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Tubérculos/microbiologia , Solanum tuberosum/microbiologia , Streptomyces/genética , Streptomyces/metabolismo , Virulência
15.
Rev Med Interne ; 40(7): 457-461, 2019 Jul.
Artigo em Francês | MEDLINE | ID: mdl-31103241

RESUMO

INTRODUCTION: Hemophagocytic lymphohistiocytosis (HLH) is a rare syndrome frequently secondary to infectious disease, especially in immuno-compromised patients. We report a HLH secondary to disseminated nocardiosis and Streptomyces spp pulmonary infection. CASE REPORT: A 69-years-old women had recent subcutaneous nodules of the forearms and loins associated with peripheral neuropathy and pulmonary nodule of the right upper lobe. Cutaneous biopsy revealed granuloma. Cutaneous lesions worsened and the patient developed a HLH with probable cardiac and neurological involvement, associated with cutaneous granulomatosis and diffuse polyclonal lymphocyte proliferation. Nocardia PCR was positive in cutaneous biopsy. Pulmonary samples revealed Streptomyces in culture and Nocardia in PCR. The evolution under antibiotic treatment was favorable. CONCLUSION: Recent diagnosis of HLH without obvious etiology should lead to etiological investigation, including the search for infections with slow-growing bacteria such as Nocardia or Streptomyces spp.


Assuntos
Infecções por Bactérias Gram-Positivas/complicações , Granuloma do Sistema Respiratório/microbiologia , Linfo-Histiocitose Hemofagocítica/microbiologia , Nocardia , Infecções Respiratórias/microbiologia , Streptomyces , Linfócitos T/imunologia , Idoso , Quimiotaxia de Leucócito/fisiologia , Coinfecção/diagnóstico , Coinfecção/imunologia , Diagnóstico Diferencial , Feminino , Infecções por Bactérias Gram-Positivas/diagnóstico , Infecções por Bactérias Gram-Positivas/microbiologia , Granuloma do Sistema Respiratório/diagnóstico , Humanos , Linfo-Histiocitose Hemofagocítica/complicações , Linfo-Histiocitose Hemofagocítica/diagnóstico , Síndrome de Ativação Macrofágica/diagnóstico , Síndrome de Ativação Macrofágica/microbiologia , Nocardia/isolamento & purificação , Nocardia/patogenicidade , Nocardiose/complicações , Nocardiose/diagnóstico , Infecções Respiratórias/diagnóstico , Dermatopatias Bacterianas/diagnóstico , Dermatopatias Bacterianas/microbiologia , Streptomyces/isolamento & purificação , Streptomyces/patogenicidade , Linfócitos T/fisiologia
16.
Mol Plant Microbe Interact ; 32(10): 1348-1359, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31107631

RESUMO

The potato common scab pathogen Streptomyces scabies produces N-coronafacoyl-l-isoleucine (CFA-Ile), which is a member of the coronafacoyl family of phytotoxins that are synthesized by multiple plant pathogenic bacteria. The CFA-Ile biosynthetic gene cluster contains a regulatory gene, cfaR, which directly controls the expression of the phytotoxin structural genes. In addition, a gene designated orf1 encodes a predicted ThiF family protein and is cotranscribed with cfaR, suggesting that it also plays a role in the regulation of CFA-Ile production. In this study, we demonstrated that CfaR is an essential activator of coronafacoyl phytotoxin production, while ORF1 is dispensable for phytotoxin production and may function as a helper protein for CfaR. We also showed that CFA-Ile inhibits the ability of CfaR to bind to the promoter region driving expression of the phytotoxin biosynthetic genes and that elevated CFA-Ile production by overexpression of both cfaR and orf1 in S. scabies increases the severity of disease symptoms induced by the pathogen during colonization of potato tuber tissue. Overall, our study reveals novel insights into the regulatory mechanisms controlling CFA-Ile production in S. scabies and it provides further evidence that CFA-Ile is an important virulence factor for this organism.


Assuntos
Toxinas Bacterianas , Solanum tuberosum , Streptomyces , Toxinas Bacterianas/genética , Regulação Bacteriana da Expressão Gênica , Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia , Streptomyces/genética , Streptomyces/patogenicidade
17.
Phytopathology ; 109(7): 1115-1128, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30829555

RESUMO

Potato scab, a serious soilborne disease caused by Streptomyces spp., occurs in potato-growing areas worldwide and results in severe economic losses. In this paper, the pathogenicity of Streptomyces strain AMCC400023, isolated from potato scabs in Hebei Province, China, was verified systematically by the radish seedling test, the potato tuber slice assay, the potted back experiment, and the detection of phytotoxin thaxtomin A. Morphological, physiological, and biochemical characteristics were determined, and the 16S ribosomal RNA analyses of Streptomyces sp. AMCC400023 were carried out. To obtain the accurate taxonomic status of the pathogen strain, the whole genome was sequenced, and the phylogenetic tree among 31 Streptomyces genomes was formed. The average nucleotide identity (ANI) and in silico DNA-DNA hybridization (isDDH) were analyzed, and at the same time, the toxicity-related genes between Streptomyces sp. AMCC400023 and Streptomyces scabiei were compared, all based on the whole-genome level. All of the data supported that, instead of a member of S. scabiei, test strain Streptomyces sp. AMCC400023 was a distinct phytopathogen of potato common scab, which had a relatively close relationship with S. scabiei while separating clearly from S. scabiei at least in the species level of taxonomic status. The complete pathogenicity island (PAI) composition of Streptomyces sp. AMCC400023 was identified, which contained a toxin region and a colonization region. It was conjectured that the PAI of Streptomyces sp. AMCC400023 might be directly or indirectly acquired from S. scabiei 87-22 by horizontal gene transfer, or at the very least, there was a very close homologous relationship between the two pathogens as indicated by a series of analyses, such as phylogenetic relationships among 31 Streptomyces species, ANI and isDDH analyses, PAI structure mapping, thaxtomin A synthetic gene cluster tree construction, and most important, the collinearity analysis at the genome level.


Assuntos
Ilhas Genômicas/genética , Doenças das Plantas/microbiologia , Solanum tuberosum , Streptomyces , China , Genômica , Filogenia , Solanum tuberosum/microbiologia , Streptomyces/patogenicidade
18.
Nat Prod Rep ; 36(2): 307-325, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30063232

RESUMO

Covering: up to February 2018 In recent years, genome sequencing revealed the full biosynthetic potential of bacteria causing plant diseases. Bioinformatics and advanced analytical techniques paved the way to clarify the structures of long-sought natural products with a role in virulence. Furthermore, several compounds without disease-associated function were discovered. The exploration of these molecules disclosed persistence strategies of plant pathogenic bacteria outside their hosts and provided access to new bioactive compounds with therapeutic potential. In this review, we will summarize some of the striking findings in the field, paying particular attention to unique natural product pathways and their unprecedented biosynthetic features as well as the biological activities of the retrieved compounds.


Assuntos
Bactérias/genética , Bactérias/patogenicidade , Produtos Biológicos/metabolismo , Plantas/microbiologia , Bactérias/metabolismo , Burkholderia/genética , Burkholderia/metabolismo , Burkholderia/patogenicidade , Genoma Bacteriano , Genômica/métodos , Doenças das Plantas/microbiologia , Ralstonia solanacearum/genética , Ralstonia solanacearum/metabolismo , Ralstonia solanacearum/patogenicidade , Streptomyces/genética , Streptomyces/metabolismo , Streptomyces/patogenicidade , Xanthomonas/genética , Xanthomonas/metabolismo , Xanthomonas/patogenicidade
19.
Nat Prod Res ; 33(20): 2951-2957, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30304960

RESUMO

Two Streptomyces spp. strains responsible for potato common scab infections in Uruguay which do not produce diketopiperazines were identified through whole-genome sequencing, and the virulence factor produced by one of them was isolated and characterized. Phylogenetic analysis showed that both pathogenic strains can be identified as S. niveiscabiei, and the structure of the phytotoxin was elucidated as that of the polyketide desmethylmensacarcin using MS and NMR methods. The metabolite is produced in yields of ∼200 mg/L of culture media, induces deep necrotic lesions on potato tubers, stuns root and shoot growth in radish seedlings, and is comparatively more aggressive than thaxtomin A. This is the first time that desmethylmensacarcin, a member of a class of compounds known for their antitumor and antibiotic activity, is associated with phytotoxicity. More importantly, it represents the discovery of a new virulence factor related to potato common scab, an economically-important disease affecting potato production worldwide.


Assuntos
Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia , Streptomyces/química , Dicetopiperazinas , Indóis/toxicidade , Estrutura Molecular , Filogenia , Piperazinas/toxicidade , Doenças das Plantas/etiologia , Raphanus/microbiologia , Streptomyces/patogenicidade , Fatores de Virulência/química , Fatores de Virulência/isolamento & purificação
20.
J Proteome Res ; 17(11): 3837-3852, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30229651

RESUMO

Streptomyces scabies is responsible for common scab disease on root and tuber vegetables. Production of its main phytotoxin thaxtomin A is triggered upon transport of cellulose byproducts cellotriose and cellobiose, which disable the repression of the thaxtomin biosynthesis activator gene txtR by the cellulose utilization regulator CebR. To assess the intracellular response under conditions where S. scabies develops a virulent behavior, we performed a comparative proteomic analysis of wild-type S. scabies 87-22 and its cebR null mutant (hyper-virulent phenotype) grown in the absence or presence of cellobiose. Our study revealed significant changes in abundance of proteins belonging to metabolic pathways known or predicted to be involved in pathogenicity of S. scabies. Among these, we identified proteins of the cello-oligosaccharide-mediated induction of thaxtomin production, the starch utilization system required for utilization of the carbohydrate stored in S. scabies's hosts, and siderophore synthesis utilization systems, which are key features of pathogens to acquire iron once they colonized the host. Thus, proteomic analysis supported by targeted mass spectrometry-based metabolite quantitative analysis revealed the central role of CebR as a regulator of virulence of S. scabies.


Assuntos
Proteínas de Bactérias/genética , Celobiose/farmacologia , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Indóis/metabolismo , Piperazinas/metabolismo , Streptomyces/genética , Proteínas de Bactérias/metabolismo , Celobiose/metabolismo , Meios de Cultura/química , Meios de Cultura/metabolismo , Eletroforese em Gel Bidimensional , Ontologia Genética , Redes e Vias Metabólicas/genética , Anotação de Sequência Molecular , Doenças das Plantas/microbiologia , Proteômica/métodos , Sideróforos/biossíntese , Sideróforos/isolamento & purificação , Streptomyces/efeitos dos fármacos , Streptomyces/metabolismo , Streptomyces/patogenicidade , Espectrometria de Massas em Tandem , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...